84 research outputs found

    Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly Active Relapsing Multiple Sclerosis

    Get PDF
    Active Relapsing Multiple Sclerosis; MRI; CladribineEsclerosis Múltiple Recurrente Activa; Imagen por resonancia magnética; CladribinaEsclerosi múltiple recurrent activa; Imatge per ressonància magnètica; CladribinaBackground and Objectives The onset of action for high-efficacy immunotherapies in multiple sclerosis (MS) is an important parameter. This study (MAGNIFY-MS) evaluates the onset of action of cladribine tablets by observing changes in combined unique active (CUA) MRI lesion counts during the first 6 months of treatment in patients with highly active relapsing MS. Methods MRI was performed at screening, baseline, and at months 1, 2, 3, and 6 after initiating treatment with cladribine tablets 3.5 mg/kg. CUA lesion counts, defined as the sum of T1 gadolinium-enhancing (Gd+) lesions and new or enlarging active T2 lesions (without T1 Gd+), were compared between postbaseline and the baseline period and standardized to the period length and the number of MRIs performed. Results Included in this analysis were 270 patients who received ≥1 dose of cladribine tablets. After treatment initiation, significant reductions in mean CUA lesion counts were observed from month 1 onward compared with the baseline period (−1.193 between month 1 and month 6, −1.500 between month 2 and month 6, and −1.692 between month 3 and month 6; all p < 0.0001). Mean T1 Gd+ lesion counts were decreased from month 2 onward compared with baseline (−0.857 at month 2, −1.355 at month 3, and −1.449 at month 6; all p < 0.0001), whereas the proportion of patients without any CUA lesions increased from 52.0% between month 1 and month 6 to 80.5% between month 3 and month 6. Discussion Findings suggest an early onset of action for cladribine tablets, with an increasing reduction in active MRI lesions over time. Trial Registration Information NCT03364036; Date registered: December 06, 2017.This study was supported by the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945)

    Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis

    Get PDF
    Background: Interferon (IFN) beta-1a is an approved treatment for relapsing remitting multiple sclerosis (RRMS) and has been examined for use in secondary progressive multiple sclerosis (SPMS). However, no information regarding blood transcriptional changes induced by IFN treatment in SPMS patients is available. Our aim was to identify a subgroup of SPMS patients presenting a gene expression signature similar to that of RRMS patients who are clinical responders to IFN treatment. Methods: SPMS patients (n = 50, 20 IFN treated and 30 untreated) were classified using unsupervised hierarchical clustering according to IFN inducible gene expression profile identified in RRMS clinical responders to treatment. IFN inducible gene expression profile was determined by finding differentially expressed genes (DEGs) between IFN treated (n = 10) and untreated (n = 25) RRMS patients. Validation was performed on an additional independent group of 27 SPMS IFN treated patients by qRT-PCR. Results: One hundred and four DEGs, enriched by IFN signaling pathway (p = 7.4E-08), were identified in IFN treated RRMS patients. Classification of SPMS patients based on these DEGs yielded two patient groups: (1) IFN transcriptional responders (n = 12, 60 % of SPMS treated patients) showing gene-expression profile similar to IFN treated RRMS patients; (2) IFN transcriptional non-responders (n = 8) showing expression profile similar to untreated patients. IFN transcriptional responders were characterized by a more active disease, as defined by higher EDSS progression and annual relapse rate. Conclusion: Within the IFN treated SPMS population, 60 % of patients have a transcriptional response to IFN which is similar to that of RRMS patients who are IFN responders to treatment

    Safety and efficacy with alemtuzumab over 13 years in relapsing-remitting multiple sclerosis: final results from the open-label TOPAZ study

    Get PDF
    Alemtuzumab; Disease-modifying therapy; Multiple sclerosisAlemtuzumab; Teràpia modificadora de la malaltia; Esclerosi múltipleAlemtuzumab; Terapia modificadora de la enfermedad; Esclerosis múltipleBackground and objectives: Alemtuzumab demonstrated superior efficacy versus subcutaneous interferon (IFN) beta-1a in participants with relapsing-remitting multiple sclerosis in the 2-year CARE-MS I and II trials. Efficacy was maintained in the 4-year CARE-MS extension, during which alemtuzumab-treated participants (‘alemtuzumab-only’) could receive additional courses upon disease activity, and IFN-treated participants switched to alemtuzumab (‘IFN-alemtuzumab’). Participants who completed the CARE-MS extension could enroll in the open-label TOPAZ study which assessed safety and efficacy for 5–7 years (11–13 years after alemtuzumab/IFN initiation). Methods: Participants received additional alemtuzumab courses as needed. Assessments included adverse events (AEs; primary outcome), annualized relapse rate (ARR), 6-month confirmed disability worsening [CDW; ⩾1.0-point Expanded Disability Status Scale (EDSS) score increase or ⩾1.5 if baseline EDSS = 0], and 6-month confirmed disease improvement [CDI; >1.0-point EDSS decrease (baseline score ⩾2.0)]. Results: 43.5% of alemtuzumab-only participants from CARE-MS II and 54.2% from CARE-MS I received no additional alemtuzumab courses; 30.0% and 20.9%, respectively, received one additional course (the median). Incidences of AEs, including thyroid AEs and infections, declined over time. The safety profile of alemtuzumab was similar for participants who received zero, one, or two additional courses. For CARE-MS II participants, who had inadequate response to previous treatment, ARR remained low during Years 3–13 for the alemtuzumab-only [0.17; 95% confidence interval (CI) 0.15–0.20] and IFN-alemtuzumab (0.14; 0.11–0.17) groups. At Year 11, the proportions of participants who were either free from CDW or who had CDI were higher in the alemtuzumab-only group (58% and 49%, respectively) than in the IFN-alemtuzumab group (51% and 37%). For CARE-MS I participants, who were previously treatment-naïve, clinical outcomes remained improved, and no between-group differences were apparent. Conclusion: Safety risks associated with alemtuzumab treatment declined over time. Clinical benefits were maintained up to 11–13 years, and most participants did not require more than one additional course.The TOPAZ study as well as writing and editorial support for this article were funded by Sanofi

    An Immersive Virtual Kitchen Training System for People with Multiple Sclerosis: A Development and Validation Study

    Get PDF
    Rehabilitation via virtual reality (VR) training tools allows repetitive, intensive, and task-specific practice in a controlled and safe environment. Our goal was to develop and validate a novel immersive VR system based on the practice of real-life activities in a kitchen environment in people with multiple sclerosis (pwMS) with upper-limb dysfunction. The novel immersive VR kitchen application includes several tasks, i.e., tidying up the kitchen, preparing a hamburger and soup meal, and dish washing. Following the development phase, the system was tested for an 8-week intervention period on a small sample of pwMS suffering from upper-limb dysfunction. The Suitability Evaluation Questionnaire for VR systems served as the primary outcome. The scores for enjoyment, sense of comfort with the system, feelings of success and control, realism, easy-to-understand instructions, assists in rehabilitation therapy, were between 4.0 and 4.6, indicating a high satisfaction. The scores for eye discomfort, dizziness, nausea, and disorientation during practice were between 2.8 and 1.3, indicating a low-to-moderate interference of the system. The virtual kitchen training system is feasible and safe for upper-limb training in pwMS and paves the way for future RCTs to examine the benefits of the system compared with standard care, thus improving the functionality of the upper limbs in pwMS

    Specific Patterns of Immune Cell Dynamics May Explain the Early Onset and Prolonged Efficacy of Cladribine Tablets: A MAGNIFY-MS Substudy.

    Get PDF
    BACKGROUND AND OBJECTIVES Cladribine tablets cause a reduction in lymphocytes with a predominant effect on B-cell and T-cell counts. The MAGNIFY-MS substudy reports the dynamic changes on multiple peripheral blood mononuclear cell (PBMC) subtypes and immunoglobulin (Ig) levels over 12 months after the first course of cladribine tablets in patients with highly active relapsing multiple sclerosis (MS). METHODS Immunophenotyping was performed at baseline (predose) and at the end of months 1, 2, 3, 6, and 12 after initiating treatment with cladribine tablets. Assessments included lymphocyte subtype counts of CD19+ B cells, CD4+ and CD8+ T cells, CD16+ natural killer cells, plasmablasts, and Igs. Immune cell subtypes were analyzed by flow cytometry, and serum IgG and IgM were analyzed by nephelometric assay. Absolute cell counts and percentage change from baseline were assessed. RESULTS The full analysis set included 57 patients. Rapid reductions in median CD19+, CD20+, memory, activated, and naive B-cell counts were detected, reaching nadir by month 2. Thereafter, total CD19+, CD20+, and naive B-cell counts subsequently reconstituted, but memory B cells remained reduced by 93%-87% for the remainder of the study. The decrease in plasmablasts was slower, reaching nadir at month 3. Decrease in T-cell subtypes was also slower and more moderate compared with B-cell subtypes, reaching nadir between months 3 and 6. IgG and IgM levels remained within the normal range over the 12-month study period. DISCUSSION Cladribine tablets induce a specific pattern of early and sustained PBMC subtype dynamics in the absence of relevant Ig changes: While total B cells were reduced dramatically, T cells were affected significantly less. Naive B cells recovered toward baseline, naive CD4 and CD8 T cells did not, and memory B cells remained reduced. The results help to explain the unique immune depletion and repopulation architecture regarding onset of action and durability of effects of cladribine tablets while largely maintaining immune competence. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT03364036. Date registered: December 06, 2017

    Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict the spatial frequency of relapses in multiple sclerosis (MS) would enable physicians to decide when to intervene more aggressively and to plan clinical trials more accurately.</p> <p>Methods</p> <p>In the current study our objective was to determine if subsets of genes can predict the time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that appear in the microarray.</p> <p>Results</p> <p>We designed a two stage predictor. The first stage predictor was based on the expression level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate 0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage predictor based on an additional different set of 9 genes was used to give a more accurate estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p < 0.001). The predictors were further evaluated and found effective both for untreated MS patients and for MS patients that subsequently received immunomodulatory treatments after the initial testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient groups).</p> <p>Conclusion</p> <p>We conclude that gene expression analysis is a valuable tool that can be used in clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing with other autoimmune diseases that characterized by relapsing-remitting nature.</p

    Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension

    Get PDF
    Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen
    corecore